Antiphospholipid Antibodies Attenuate Endothelial Repair and Promote Neointima Formation in Mice

نویسندگان

  • Victoria Ulrich
  • Eddy S. Konaniah
  • Wan‐Ru Lee
  • Sadiksha Khadka
  • Yu‐Min Shen
  • Joachim Herz
  • Jane E. Salmon
  • David Y. Hui
  • Philip W. Shaul
  • Chieko Mineo
چکیده

BACKGROUND Antiphospholipid syndrome patients have antiphospholipid antibodies (aPLs) that promote thrombosis, and they have increased cardiovascular disease risk. Although the basis for the thrombosis has been well delineated, it is not known why antiphospholipid syndrome patients also have an increased prevalence of nonthrombotic vascular occlusion. The aims of this work were to determine if aPLs directly promote medial hypertrophy or neointima formation in mice and to identify the underlying mechanisms. METHODS AND RESULTS Medial hypertrophy and neointima formation invoked by carotid artery endothelial denudation were evaluated in mice administered normal human IgG or aPLs. While aPLs had no effect on medial hypertrophy, they caused exaggerated neointima development. This was related to an aPL-induced impairment in reendothelialization post denudation, and scratch assays in cell culture revealed that there are direct effects of aPLs on endothelium that retard cell migration. Further experiments showed that aPL antagonism of endothelial migration and repair is mediated by antibody recognition of β2-glycoprotein I, apolipoprotein E receptor 2, and a decline in bioavailable NO. Consistent with these mechanisms, the adverse impacts of aPLs on reendothelialization and neointima formation were fully prevented by the NO donor molsidomine. CONCLUSIONS APLs blunt endothelial repair, and there is related aPL-induced exaggeration in neointima formation after endothelial injury in mice. The initiating process entails NO deficiency mediated by β2-glycoprotein I recognition by aPLs and apolipoprotein E receptor 2. The modulation of endothelial apolipoprotein E receptor 2 function or NO bioavailability may represent new interventions to prevent the nonthrombotic vascular occlusion and resulting cardiovascular disorders that afflict antiphospholipid syndrome patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leptin enhances the recruitment of endothelial progenitor cells into neointimal lesions after vascular injury by promoting integrin-mediated adhesion.

The adipocytokine leptin modulates vascular remodeling and neointima formation. Because endothelial progenitor cells (EPCs) participate in vascular repair, we analyzed the effects of leptin on human EPC function in vitro and in vivo. After 7 days in culture, EPCs expressed the leptin receptor and responded to leptin stimulation with increased STAT3 phosphorylation. Incubation of EPCs with lepti...

متن کامل

All-trans-retinoic acid attenuates neointima formation with acceleration of reendothelialization in balloon-injured rat aorta.

Retinoic acids may inhibit vascular smooth muscle cell proliferation, but may promote endothelial cell proliferation in cell culture. However, little data are available about the effects of all-trans-retinoic acid (ATRA) on endothelial regeneration and functional recovery in an experimental model of vascular injury. Accordingly, we investigated whether ATRA may attenuate neointima formation and...

متن کامل

Antiphospholipid antibodies from antiphospholipid syndrome patients activate endothelial cells in vitro and in vivo.

BACKGROUND Antiphospholipid (aPL) antibodies are associated with thrombosis in patients diagnosed with antiphospholipid syndrome (APS) and enhance thrombus formation in vivo in mice, but the mechanism of thrombosis by aPL is not completely understood. Although aPL antibodies have been shown to inhibit protein C activation and activate endothelial cells (ECs) in vitro, no study has examined whet...

متن کامل

Vascular endothelial growth factor regulates reendothelialization and neointima formation in a mouse model of arterial injury.

BACKGROUND The rate of reendothelialization is critical in neointima formation after arterial injury. Vascular endothelial growth factor (VEGF), a potent endothelial mitogen, has been advocated for accelerating endothelial repair and preventing intimal hyperplasia after percutaneous coronary interventions. However, the precise mechanism of action of VEGF treatment and the physiologic role of en...

متن کامل

The vascular repair process after injury of the carotid artery is regulated by IL-1RI and MyD88 signalling.

AIM The aim of this study was to determine whether innate immune signalling influences the vascular repair process in response to mechanical injury of arteries in mice. METHODS AND RESULTS A non-obstructive collar was introduced around the carotid artery of MyD88-deficient mice, and neointima formation was compared with that observed in MyD88-competent mice. MyD88-deficient mice are character...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014